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Introduction
Many models of engineering systems involve the rate of change of a quantity. There is thus a need
to incorporate derivatives into the mathematical model. These mathematical models are examples
of differential equations.

Accompanying the differential equation will be one or more conditions that let us obtain a unique
solution to a particular problem. Often we solve the differential equation first to obtain a general
solution; then we apply the conditions to obtain the unique solution. It is important to know which
conditions must be specified in order to obtain a unique solution.

�

�

�

�
Prerequisites

Before starting this Section you should . . .

• be able to differentiate; ( 11)

• be able to integrate; ( 13)'
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Learning Outcomes
On completion you should be able to . . .

• understand the use of differential equations in
modelling engineering systems

• identify the order and type of a differential
equation

• recognise the nature of a general solution

• determine the nature of the appropriate
additional conditions which will give a unique
solution to the equation
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1. Case study: Newton’s law of cooling
When a hot liquid is placed in a cooler environment, experimental observation shows that its tem-
perature decreases to approximately that of its surroundings. A typical graph of the temperature of
the liquid plotted against time is shown in Figure 1.

Time

Temperature
of  Liquid

surrounding
temperature

Figure 1
After an initially rapid decrease the temperature changes progressively less rapidly and eventually the
curve appears to ‘flatten out’.

Newton’s law of cooling states that the rate of cooling of liquid is proportional to the difference
between its temperature and the temperature of its environment (the ambient temperature). To
convert this into mathematics, let t be the time elapsed (in seconds, s), θ the temperature of the
liquid (◦C),and θ0 the temperature of the liquid at the start (t = 0). The temperature of the
surroundings is denoted by θs.

Task

Write down the mathematical equation which is equivalent to Newton’s law of
cooling and state the accompanying condition.

First, find an expression for the rate of cooling, and an expression for the difference between the
liquid’s temperature and that of the environment:

Your solution

Answer

The rate of cooling is the rate of change of temperature with time:
dθ

dt
.

The temperature difference is θ − θs.
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Now formulate Newton’s law of cooling:

Your solution

Answer

You should obtain
dθ

dt
∝ (θ − θs) or, equivalently:

dθ

dt
= −k(θ − θs). k is a positive constant of

proportion and the negative sign is present because (θ−θs) is positive, whereas
dθ

dt
must be negative,

since θ decreases with time. The units of k are s−1. The accompanying condition is θ = θ0 at t = 0
which simply states the temperature of the liquid when the cooling begins.

In the above Task we call t the independent variable and θ the dependent variable. Since the condition
is given at t = 0 we refer to it as an initial condition. For future reference, the solution of the above
differential equation which satisfies the initial condition is θ = θs + (θ0 − θs)e

−kt.

2. The general solution of a differential equation
Consider the equation y = Ae2x where A is an arbitrary constant. If we differentiate it we obtain

dy

dx
= 2Ae2x

and so, since y = Ae2x we obtain

dy

dx
= 2y.

Thus a differential equation satisfied by y is

dy

dx
= 2y.

Note that we have eliminated the arbitrary constant.
Now consider the equation

y = A cos 3x + B sin 3x

where A and B are arbitrary constants. Differentiating, we obtain

dy

dx
= −3A sin 3x + 3B cos 3x.

Differentiating a second time gives

d2y

dx2
= −9 A cos 3x− 9 B sin 3x.

The right-hand side is simply (−9) times the expression for y. Hence y satisfies the differential
equation

d2y

dx2
= −9y.
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Task

Find a differential equation satisfied by y = A cosh 2x + B sinh 2x where A and
B are arbitrary constants.

Your solution

Answer

Differentiating once we obtain
dy

dx
= 2A sinh 2x + 2B cosh 2x

Differentiating a second time we obtain
d2y

dx2
= 4A cosh 2x + 4B sinh 2x

Hence
d2y

dx2
= 4y

We have seen that an expression including one arbitrary constant required one differentiation to
obtain a differential equation which eliminated the arbitrary constant. Where two constants were
present, two differentiations were required. Is the converse true? For example, would a differential

equation involving
dy

dx
as the only derivative have a general solution with one arbitrary constant and

would a differential equation which had
d2y

dx2
as the highest derivative produce a general solution with

two arbitrary constants? The answer is, usually, yes.

Task

Integrate twice the differential equation

d2y

dx2
=

w

2
(`x− x2),

where w and ` are constants, to find a general solution for y.

Your solution

Answer

Integrating once:
dy

dx
=

w

2

(
`x2

2
− x3

3

)
+ A where A is an arbitrary constant (of integration).

Integrating again: y =
w

2

(
`x3

6
− x4

12

)
+ A x + B where B is a second arbitrary constant.
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Consider the simple differential equation

dy

dx
= 2x.

On integrating, we obtain the general solution

y = x2 + C

where C is an arbitrary constant. As C varies we get different solutions, each of which belongs to
the family of solutions. Figure 2 shows some examples.

y = x2+1

y = x2

y = x2−1

y = x2−3

C = 1

C = 0

C = −1

C = −3

−3

−1

1

x

y

Figure 2

It can be shown that no two members of this family of graphs ever meet and that through each
point in the x-y plane passes one, and only one, of these graphs. Hence if we specify the boundary
condition y = 2 when x = 0, written y(0) = 2, then using y = x2 + c:

2 = 0 + C so that C = 2

and y = x2 + 2 is the unique solution.

Task

Find the unique solution of the differential equation
dy

dx
= 3x2 which satisfies the

condition y(1) = 4.

Your solution

6 HELM (2008):
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Answer
You should obtain y = x3 + 3 since, by a single integration we have y = x3 + C, where C is an
arbitrary constant. Now when x = 1, y = 4 so that 4 = 1 + C. Hence C = 3 and the unique
solution is y = x3 + 3.

Example 1
Solve the differential equation

d2y

dx2
= 6x subject to the conditions

(a) y(0) = 2 and y(1) = 3

(b) y(0) = 2 and y(1) = 5

(c) y(0) = 2 and
dy

dx
= 1 at x = 0.

Solution

(a) Integrating the differential equation once produces
dy

dx
= 3x2 +A. The general solution is found

by integrating a second time to give y = x3 + A x + B, where A and B are arbitrary constants.

Imposing the conditions y(0) = 2 and y(1) = 3: at x = 0 we have y = 2 = 0 + 0 + B = B so that
B = 2, and at x = 1 we have y = 3 = 1+A+B = 1+A+2. Therefore A = 0 and the solution is

y = x3 + 2.

(b) Here the second condition is y(1) = 5 so at x = 1

y = 5 = 1 + A + 2 so that A = 2

and the solution in this case is

y = x3 + 2x + 2.

(c) Here the second condition is

dy

dx
= 1 at x = 0 i.e. y′(0) = 1

then since
dy

dx
= 3x2 + A, putting x = 0 we get:

dy

dx
= 1 = 0 + A

so that A = 1 and the solution in this case is y = x3 + x + 2.
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3. Classifying differential equations
When solving differential equations (either analytically or numerically) it is important to be able to
recognise the various kinds that can arise. We therefore need to introduce some terminology which
will help us to distinguish one kind of differential equation from another.

• An ordinary differential equation (ODE) is any relation between a function of a single
variable and its derivatives. (All differential equations studied in this workbook are ordinary.)

• The order of a differential equation is the order of the highest derivative in the equation.

• A differential equation is linear if the dependent variable and its derivatives occur to the first
power only and if there are no products involving the dependent variable or its derivatives.

Example 2
Classify the differential equations specifying the order and type (linear/non-linear)

(a)
d2y

dx2
− dy

dx
= x2

(b)
d2x

dt2
=

(
dx

dt

)3

+ 3x

(c)
dx

dt
− x = t2

(d)
dy

dt
+ cos y = 0

(e)
dy

dt
+ y2 = 4

Solution

(a) Second order, linear.

(b) Second order, non-linear (because of the cubic term).

(c) First order, linear.

(d) First order, non-linear (because of the cos y term).

(e) First order, non-linear (because of the y2 term).

Note that in (a) the independent variable is x whereas in the other cases it is t.

In (a), (d) and (e) the dependent variable is y and in (b) and (c) it is x.

8 HELM (2008):
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Exercises

1. In this RL circuit the switch is closed at t = 0 and a constant voltage E is applied.

E
+ −

R L
i

The voltage across the resistor is iR where i is the current flowing in the circuit and R is

the (constant) resistance. The voltage across the inductance is L
di

dt
where L is the constant

inductance.

Kirchhoff’s law of voltages states that the applied voltage is the sum of the other voltages in
the circuit. Write down a differential equation for the current i and state the initial condition.

2. The diagram below shows the graph of i against t (from Exercise 1). What information does
this graph convey?

E
R

t

i

3. In the LCR circuit below the voltage across the capacitor is q/C where q is the charge on the

capacitor, and C is the capacitance. Note that
dq

dt
= i. Find a differential equation for i and

write down the initial conditions if the initial charge is zero and the switch is closed at t = 0.

E
+ −

RL
i C

4. Find differential equations satisfied by

(a) y = A cos 4x + B sin 4x

(b) x = A e−2t

(c) y = A sin x + B sinh x + C cos x + D cosh x (harder)

5. Find the family of solutions of the differential equation
dy

dx
= −2x. Sketch the curves of some

members of the family on the same axes. What is the solution if y(1) = 3?

6. (a) Find the general solution of the differential equation y′′ = 12x2.

(b) Find the solution which satisfies y(0) = 2, y(1) = 8

(c) Find the solution which satisfies y(0) = 1, y′(0) = −2.

7. Classify the differential equations

(a)
d2x

dt2
+3

dx

dt
= x (b)

d3y

dx3
=

(
dy

dx

)2

+
dy

dx
(c)

dy

dx
+y = sin x (d)

d2y

dx2
+y

dy

dx
= 2.

HELM (2008):
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Answers

1. L
di

dt
+ R i = E ; i = 0 at t = 0.

2. Current increases rapidly at first, then less rapidly and tends to the value
E

R
which is what

it would be in the absence of L.

3. L
d2q

dt2
+ R

dq

dt
+

q

C
= E; q = 0 and i =

dq

dt
= 0 at t = 0.

4. (a)
d2y

dx2
= −16y (b)

dx

dt
= −2x (c)

d4y

dx4
= y

5. y = −x2 + C

y = 1 − x2

y = −x2

y = −1 − x2 C = −1

C = 0

C = 1
− 1

1

x

y

If 3 = −1 + C then C = 4 and y = −x2 + 4.

6.

(a) y = x4 + A x + B

(b) When x = 0, y = 2 = B; hence B = 2. When x = 1, y = 8 = 1 + A + B = 3 + A

hence A = 5 and y = x4 + 5x + 2.

(c) When x = 0 y = 1 = B. Hence B = 1;
dy

dx
= y′ = 4x3 + A, so at x = 0, y′ = −2 = A.

Therefore y = x4 − 2x + 1

7. (a) Second order, linear

(b) Third order, non-linear (squared term)

(c) First order, linear

(d) Second order, non-linear (product term)

10 HELM (2008):
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First Order
Differential Equations

�
�

�
�19.2

Introduction
Separation of variables is a technique commonly used to solve first order ordinary differential
equations. It is so-called because we rearrange the equation to be solved such that all terms involving
the dependent variable appear on one side of the equation, and all terms involving the independent
variable appear on the other. Integration completes the solution. Not all first order equations can be
rearranged in this way so this technique is not always appropriate. Further, it is not always possible
to perform the integration even if the variables are separable.

In this Section you will learn how to decide whether the method is appropriate, and how to apply it
in such cases.

An exact first order differential equation is one which can be solved by simply integrating both sides.
Only very few first order differential equations are exact. You will learn how to recognise these and
solve them. Some others may be converted simply to exact equations and that is also considered

Whilst exact differential equations are few and far between an important class of differential equations
can be converted into exact equations by multiplying through by a function known as the integrating
factor for the equation. In the last part of this Section you will learn how to decide whether an
equation is capable of being transformed into an exact equation, how to determine the integrating
factor, and how to obtain the solution of the original equation.

�

�

�

�
Prerequisites

Before starting this Section you should . . .

• understand what is meant by a differential
equation; (Section 19.1)

'

&

$

%

Learning Outcomes
On completion you should be able to . . .

• explain what is meant by separating the
variables of a first order differential equation

• determine whether a first order differential
equation is separable

• solve a variety of equations using the
separation of variables technique
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1. Separating the variables in first order ODEs
In this Section we consider differential equations which can be written in the form

dy

dx
= f(x)g(y)

Note that the right-hand side is a product of a function of x, and a function of y. Examples of such
equations are

dy

dx
= x2 y3,

dy

dx
= y2 sin x and

dy

dx
= y ln x

Not all first order equations can be written in this form. For example, it is not possible to rewrite
the equation

dy

dx
= x2 + y3

in the form

dy

dx
= f(x)g(y)

Task

Determine which of the following differential equations can be written in the form

dy

dx
= f(x)g(y)

If possible, rewrite each equation in this form.

(a)
dy

dx
=

x2

y2
, (b)

dy

dx
= 4x2 + 2y2, (c) y

dy

dx
+ 3x = 7

Your solution

Answer

(a)
dy

dx
= x2

(
1

y2

)
, (b) cannot be written in the stated form,

(c) Reformulating gives
dy

dx
= (7− 3x)× 1

y
which is in the required form.

12 HELM (2008):
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The variables involved in differential equations need not be x and y. Any symbols for variables may
be used. Other first order differential equations are

dz

dt
= tez dθ

dt
= −θ and

dv

dr
= v

(
1

r2

)
Given a differential equation in the form

dy

dx
= f(x)g(y)

we can divide through by g(y) to obtain

1

g(y)

dy

dx
= f(x)

If we now integrate both sides of this equation with respect to x we obtain∫
1

g(y)

dy

dx
dx =

∫
f(x) dx

that is∫
1

g(y)
dy =

∫
f(x) dx

We have separated the variables because the left-hand side contains only the variable y, and the
right-hand side contains only the variable x. We can now try to integrate each side separately. If
we can actually perform the required integrations we will obtain a relationship between y and x.
Examples of this process are given in the next subsection.

Key Point 1

Method of Separation of Variables

The solution of the equation
dy

dx
= f(x)g(y)

may be found from separating the variables and integrating:∫
1

g(y)
dy =

∫
f(x) dx

HELM (2008):
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2. Applying the method of separation of variables to ODEs

Example 3
Use the method of separation of variables to solve the differential equation

dy

dx
=

3x2

y

Solution

The equation already has the form

dy

dx
= f(x)g(y)

where

f(x) = 3x2 and g(y) = 1/y.

Dividing both sides by g(y) we find

y
dy

dx
= 3x2

Integrating both sides with respect to x gives∫
y
dy

dx
dx =

∫
3x2 dx

that is∫
y dy =

∫
3x2 dx

Note that the left-hand side is an integral involving just y; the right-hand side is an integral involving
just x. After integrating both sides with respect to the stated variables we find

1
2
y2 = x3 + c

where c is a constant of integration. (You might think that there would be a constant on the
left-hand side too. You are quite right but the two constants can be combined into a single constant
and so we need only write one.)

We now have a relationship between y and x as required. Often it is sufficient to leave your answer
in this form but you may also be required to obtain an explicit relation for y in terms of x. In this
particular case

y2 = 2x3 + 2c

so that

y = ±
√

2x3 + 2c

14 HELM (2008):
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Task

Use the method of separation of variables to solve the differential equation

dy

dx
=

cos x

sin 2y

First separate the variables so that terms involving y and
dy

dx
appear on the left, and terms involving

x appear on the right:

Your solution

Answer
You should have obtained

sin 2y
dy

dx
= cos x

Now reformulate both sides as integrals:

Your solution

Answer∫
sin 2y

dy

dx
dx =

∫
cos x dx that is

∫
sin 2y dy =

∫
cos x dx

Now integrate both sides:

Your solution

Answer

−1
2
cos 2y = sin x + c

Finally, rearrange to obtain an expression for y in terms of x:

Your solution

Answer

y = 1
2
cos−1(D − 2 sin x) where D = −2c

HELM (2008):
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Exercises

1. Solve the equation

dy

dx
=

e−x

y
.

2. Solve the following equation subject to the condition y(0) = 1:

dy

dx
= 3x2e−y

3. Find the general solution of the following equations:

(a)
dy

dx
= 3, (b)

dy

dx
=

6 sin x

y
4. (a) Find the general solution of the equation

dx

dt
= t(x− 2).

(b) Find the particular solution which satisfies the condition x(0) = 5.

5. Some equations which do not appear to be separable can be made so by means of a suitable
substitution. By means of the substitution z = y/x solve the equation

dy

dx
=

y2

x2
+

y

x
+ 1

6. The equation

iR + L
di

dt
= E

where R, L and E are constants arises in electrical circuit theory. This equation can be
solved by separation of variables. Find the solution which satisfies the condition i(0) = 0.

Answers

1. y = ±
√

D − 2e−x.

2. y = ln(x3 + e).

3 (a) y = 3x + C, (b) 1
2
y2 = C − 6 cos x.

4. (a) x = 2 + Aet2/2, (b) x = 2 + 3et2/2.

5. z = tan(ln Dx) so that y = x tan(ln Dx).

6. i =
E

R
(1− e−t/τ ) where τ = L/R.

16 HELM (2008):
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3. Exact equations

Consider the differential equation

dy

dx
= 3x2

By direct integration we find that the general solution of this equation is

y = x3 + C

where C is, as usual, an arbitrary constant of integration.

Next, consider the differential equation

d

dx
(yx) = 3x2.

Again, by direct integration we find that the general solution is

yx = x3 + C.

We now divide this equation by x to obtain

y = x2 +
C

x
.

The differential equation
d

dx
(yx) = 3x2 is called an exact equation. It can effectively be solved by

integrating both sides.

Task

Solve the equations (a)
dy

dx
= 5x4 (b)

d

dx
(x3y) = 5x4

Your solution

(a) y = (b) y =

Answer

(a) y = x5 + C (b) x3y = x5 + C so that y = x2 +
C

x3
.

If we consider examples of this kind in a more general setting we obtain the following Key Point:

HELM (2008):
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Key Point 2

The solution of the equation
d

dx
(f(x) · y) = g(x)

is

f(x) · y =

∫
g(x) dx or y =

1

f(x)

∫
g(x) dx

4. Solving exact equations
As we have seen, the differential equation

d

dx
(yx) = 3x2 has solution y = x2 +C/x. In the solution,

x2 is called the definite part and C/x is called the indefinite part (containing the arbitrary constant
of integration). If we take the definite part of this solution, i.e. yd = x2, then

d

dx
(yd · x) =

d

dx
(x2 · x) =

d

dx
(x3) = 3x2.

Hence yd = x2 is a solution of the differential equation.
Now if we take the indefinite part of the solution i.e. yi = C/x then

d

dx
(yi · x) =

d

dx

(
C

x
· x

)
=

d

dx
(C) = 0.

It is always the case that the general solution of an exact equation is in two parts: a definite part
yd(x) which is a solution of the differential equation and an indefinite part yi(x) which satisfies a
simpler version of the differential equation in which the right-hand side is zero.

Task

(a) Solve the equation

d

dx
(y cos x) = cos x

(b) Verify that the indefinite part of the solution satisfies the equation

d

dx
(y cos x) = 0.

(a) Integrate both sides of the first differential equation:

Your solution

18 HELM (2008):
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Answer

y cos x =

∫
cos x dx = sin x + C leading to y = tan x + C sec x

(b) Substitute for y in the indefinite part (i.e. the part which contains the arbitrary constant) in the
second differential equation:

Your solution

Answer
The indefinite part of the solution is yi = C sec x and so yi cos x = C and

d

dx
(yi cos x) =

d

dx
(C) = 0

5. Recognising an exact equation
The equation

d

dx
(yx) = 3x2 is exact, as we have seen. If we expand the left-hand side of this

equation (i.e. differentiate the product) we obtain

x
dy

dx
+ y.

Hence the equation

x
dy

dx
+ y = 3x2

must be exact, but it is not so obvious that it is exact as in the original form. This leads to the
following Key Point:

Key Point 3

The equation

f(x)
dy

dx
+ y f ′(x) = g(x)

is exact. It can be re-written as

d

dx
(y f(x)) = g(x) so that y f(x) =

∫
g(x) dx

HELM (2008):
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Example 4
Solve the equation

x3 dy

dx
+ 3x2y = x

Solution

Comparing this equation with the form in Key Point 3 we see that f(x) = x3 and g(x) = x. Hence
the equation can be written

d

dx
(yx3) = x

which has solution

yx3 =

∫
x dx = 1

2
x2 + C.

Therefore

y =
1

2x
+

C

x3
.

Task

Solve the equation sin x
dy

dx
+ y cos x = cos x.

Your solution

Answer
You should obtain y = 1 + Ccosec x since, here f(x) = sin x and g(x) = cos x. Then

d

dx
(y sin x) = cos x and y sin x =

∫
cos x dx = sin x + C

Finally y = 1 + C cosec x.

20 HELM (2008):
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Exercises

1. Solve the equation
d

dx
(yx2) = x3.

2. Solve the equation
d

dx
(yex) = e2x given the condition y(0) = 2.

3. Solve the equation e2x dy

dx
+ 2e2xy = x2.

4. Show that the equation x2 dy

dx
+ 2xy = x3 is exact and obtain its solution.

5. Show that the equation x2 dy

dx
+ 3xy = x3 is not exact.

Multiply the equation by x and show that the resulting equation is exact and obtain its solution.

Answers

1. y =
x2

4
+

C

x2
. 2. y = 1

2
ex + 3

2
e−x. 3. y =

(
1
3
x3 + C

)
e−2x. 4. y =

1

4
x2 +

C

x2
.

5. y =
1

5
x2 +

C

x3
.

6. The integrating factor
The equation

x2 dy

dx
+ 3x y = x3

is not exact. However, if we multiply it by x we obtain the equation

x3 dy

dx
+ 3x2y = x4.

This can be re-written as

d

dx
(x3y) = x4

which is an exact equation with solution

x3y =

∫
x4dx

so x3y =
1

5
x5 + C

and hence

y =
1

5
x2 +

C

x3
.

The function by which we multiplied the given differential equation in order to make it exact is called
an integrating factor. In this example the integrating factor is simply x.

HELM (2008):
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Task

Which of the following differential equations can be made exact by multiplying by
x2?

(a)
dy

dx
+

2

x
y = 4 (b) x

dy

dx
+ 3y = x2 (c)

1

x

dy

dx
− 1

x2
y = x

(d)
1

x

dy

dx
+

1

x2
y = 3.

Where possible, write the exact equation in the form
d

dx
(f(x) y) = g(x).

Your solution

Answer

(a) Yes. x2 dy

dx
+ 2xy = 4x2 becomes

d

dx
(x2y) = 4x2.

(b) Yes. x3 dy

dx
+ 3x2y = x4 becomes

d

dx
(x3y) = x4.

(c) No. This equation is already exact as it can be written in the form
d

dx

(
1

x
y

)
= x.

(d) Yes. x
dy

dx
+ y = 3x2 becomes

d

dx
(xy) = 3x2.

7. Finding the integrating factor for linear ODEs
The differential equation governing the current i in a circuit with inductance L and resistance R in
series subject to a constant applied electromotive force E cos ωt, where E and ω are constants, is

L
di

dt
+ Ri = E cos ωt (1)

This is an example of a linear differential equation in which i is the dependent variable and t is
the independent variable. The general standard form of a linear first order differential equation is
normally written with ‘y’ as the dependent variable and with ‘x’ as the independent variable and

arranged so that the coefficient of
dy

dx
is 1. That is, it takes the form:

dy

dx
+ f(x) y = g(x) (2)

in which f(x) and g(x) are functions of x.
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Comparing (1) and (2), x is replaced by t and y by i to produce
di

dt
+ f(t) i = g(t). The function

f(t) is the coefficient of the dependent variable in the differential equation. We shall describe the
method of finding the integrating factor for (1) and then generalise it to a linear differential equation
written in standard form.

Step 1 Write the differential equation in standard form i.e. with the coefficient of the derivative
equal to 1. Here we need to divide through by L:

di

dt
+

R

L
i =

E

L
cos ωt.

Step 2 Integrate the coefficient of the dependent variable (that is, f(t) = R/L) with respect to
the independent variable (that is, t), and ignoring the constant of integration∫

R

L
dt =

R

L
t.

Step 3 Take the exponential of the function obtained in Step 2.

This is the integrating factor (I.F.)

I.F. = eRt/L.

This leads to the following Key Point on integrating factors:

Key Point 4

The linear differential equation (written in standard form):

dy

dx
+ f(x)y = g(x) has an integrating factor I.F. = exp

[∫
f(x)dx

]

Task

Find the integrating factors for the equations

(a) x
dy

dx
+ 2x y = xe−2x (b) t

di

dt
+ 2t i = te−2t (c)

dy

dx
− (tan x)y = 1.

Your solution
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Answer

(a) Step 1 Divide by x to obtain
dy

dx
+ 2y = e−2x

Step 2 The coefficient of the independent variable is 2 hence

∫
2 dx = 2x

Step 3 I.F. = e2x

(b) The only difference from (a) is that i replaces y and t replaces x. Hence I.F. = e2t.

(c) Step 1 This is already in the standard form.

Step 2

∫
− tan x dx =

∫
− sin x

cos x
dx = ln cos x.

Step 3 I.F. = eln cos x = cos x

8. Solving equations via the integrating factor
Having found the integrating factor for a linear equation we now proceed to solve the equation.
Returning to the differential equation, written in standard form:

di

dt
+

R

L
i =

E

L
cos ωt

for which the integrating factor is

eRt/L

we multiply the equation by the integrating factor to obtain

eRt/L di

dt
+

R

L
eRt/L i =

E

L
eRt/L cos ωt

At this stage the left-hand side of this equation can always be simplified as follows:

d

dt
(eRt/L i) =

E

L
eRt/L cos ωt.

Now this is in the form of an exact differential equation and so we can integrate both sides to obtain
the solution:

eRt/L i =
E

L

∫
eRt/L cos ωt dt.

All that remains is to complete the integral on the right-hand side. Using the method of integration
by parts we find∫

eRt/L cos ωt dt =
L

L2ω2 + R2
[ωL sin ωt + R cos ωt] eRt/L

Hence

eRt/L i =
E

L2ω2 + R2
[ωL sin ωt + R cos ωt] eRt/L + C.

Finally

i =
E

L2ω2 + R2
[ωL sin ωt + R cos ωt] + C e−Rt/L.
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is the solution to the original differential equation (1). Note that, as we should expect for the solution
to a first order differential equation, it contains a single arbitrary constant C.

Task

Using the integrating factors found earlier in the Task on pages 22-23, find the
general solutions to the differential equations

(a) x2 dy

dx
+ 2x2y = x2e−2x (b) t2

di

dt
+ 2t2i = t2e−2t (c)

dy

dx
− (tan x)y = 1.

Your solution

Answer

(a) The standard form is
dy

dx
+ 2y = e−2x for which the integrating factor is e2x.

e2x dy

dx
+ 2e2x y = 1

i.e.
d

dx
(e2x y) = 1 so that e2xy = x + C

leading to y = (x + C)e−2x

(b) The general solution is i = (t+C)e−2t as this problem is the same as (a) with different variables.

(c) The equation is in standard form and the integrating factor is cos x.

then
d

dx
(cos x y) = cos x so that cos x y =

∫
cos x dx = sin x + C

giving y = tan x + C sec x
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Engineering Example 1

An RC circuit with a single frequency input

Introduction

The components in RC circuits containing resistance, inductance and capacitance can be chosen
so that the circuit filters out certain frequencies from the input. A particular kind of filter circuit
consists of a resistor and capacitor in series and acts as a high cut (or low pass) filter. The high cut
frequency is defined to be the frequency at which the magnitude of the voltage across the capacitor
(the output voltage) is 1/

√
2 of the magnitude of the input voltage.

Problem in words

Calculate the high cut frequency for an RC circuit is subjected to a single frequency input of angular
frequency ω and magnitude vi.

(a) Find the steady state solution of the equation

R
dq

dt
+

q

C
= vie

jωt

and hence find the magnitude of

(i) the voltage across the capacitor vc =
q

C

(ii) the voltage across the resistor vR = R
dq

dt

(b) Using the impedance method of 12.6 confirm your results to part (a) by calculating

(i) the voltage across the capacitor vc

(ii) the voltage across the resistor vR in response to a single frequency of angular frequency ω and
magnitude vi.

(c) For the case where R = 1 kΩ and C = 1 µF, find the ratio
|vc|
|vi|

and complete the table below

ω 10 102 103 104 105 106

|vc|
|vi|

(d) Explain why the table results show that a RC circuit acts as a high-cut filter and find the value

of the high-cut frequency, defined as fhc = ωhc/2π, such that
|vc|
|vi|

=
1√
2
.
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Mathematical statement of the problem

We need to find a particular solution to the differential equation R
dq

dt
+

q

C
= vie

jωt.

This will give us the steady state solution for the charge q. Using this we can find vc =
q

C
and

vR = R
dq

dt
. These should give the same result as the values calculated by considering the impedances

in the circuit. Finally we can calculate
|vc|
|vi|

and fill in the table of values as required and find the

high-cut frequency from
|vc|
|vi|

=
1√
2

and fhc = ωhc/2π.

Mathematical solution

(a) To find a particular solution, we try a function of the form q = c0e
jωt which means that

dq

dt
= jωc0e

jωt.

Substituting into R
dq

dt
+

q

C
= vie

jωt we get

Rjωc0e
jωt +

c0e
jωt

C
= vie

jωt ⇒ Rjωc0 +
c0

C
= vi

⇒ c0 =
vi

Rjω + 1
C

=
Cvi

RCjω + 1
⇒ q =

Cvi

RCjω + 1
ejωt

Thus

(i) vc =
q

C
=

vi

RCjω + 1
ejωt and (ii) vR =

dq

dt
=

RCvijω

RCjω + 1
ejωt

(b) We use the impedance to determine the voltage across each of the elements. The applied voltage
is a single frequency of angular frequency ω and magnitude vi such that V = vie

jωt.

For an RC circuit, the impedance of the circuit is Z = ZR + Zc where ZR is the impedance of the

resistor R and Zc is the impedance of the capacitor Zc = − j

ωC
.

Therefore Z = R− j

ωC
.

The current can be found using v = Zi giving

vie
jωt =

(
R− j

ωC

)
i ⇒ i =

vie
jωt

R− j
ωC

We can now use vc = zci and vR = zRi giving

(i) vc =
q

C
= − j

ωC
× vi

R− j
ωC

ejωt =
vi

RCjω + 1
ejωt

(ii) vR =
Rvi

R− j
ωC

ejωt =
RCvijω

RCjω + 1
ejωt

which confirms the result in part (a) found by solving the differential equation.

(c) When R = 1000 Ω and C = 10−6F

vc =
vi

RCjω + 1
ejωt =

vi

10−3jω + 1
ejωt
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So
|vc|
|vi|

=

∣∣∣∣ 1

10−3jω + 1

∣∣∣∣ |ejωt| =
∣∣∣∣ 1

10−3jω + 1

∣∣∣∣ =
1√

10−6ω2 + 1

Table 1: Values of

∣∣∣∣vc

vi

∣∣∣∣ for a range of values of ω

ω 10 102 103 104 105 106

|vc|
|vi|

0.99995 0.995 0.707 0.00995 0.0099995 0.001

(d) Table 1 shows that a RC circuit can be used as a high-cut filter because for low values of ω,
|vc|
|vi|

is approximately 1 and for high values of ω,
|vc|
|vi|

is approximately 0. So the circuit will filter out high

frequency values.

|vc|
|vi|

=
1√
2

when
1√

10−6ω2 + 1
=

1√
2

⇔ 10−6ω2 + 1 = 2 ⇔ 10−6ω2 = 1 ⇔ ω2 = 106

As we are considering ω to be a positive frequency, ω = 1000.

So fhc =
ωhc

2π
=

1000

2π
≈ 159 Hz.

Interpretation

We have shown that for an RC circuit finding the steady state solution of the differential equation

with a single frequency input voltage yields the same result for
|vc|
|vi|

and
|vR|
|vi|

as found by working

with the complex impedances for the circuit.

An RC circuit can be used as a high-cut filter and in the case where R = 1 kΩ, C = 1 µF we found
the high-cut frequency to be at approximately 159 Hz.

This means that the circuit will pass frequencies less than this value and remove frequencies greater
than this value.
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Exercises

1. Solve the equation x2 dy

dx
+ x y = 1.

2. Find the solution of the equation x
dy

dx
− y = x subject to the condition y(1) = 2.

3. Find the general solution of the equation
dy

dt
+ (tan t) y = cos t.

4. Solve the equation
dy

dt
+ (cot t) y = sin t.

5. The temperature θ (measured in degrees) of a body immersed in an atmosphere of varying

temperature is given by
dθ

dt
+ 0.1θ = 5− 2.5t. Find the temperature at time t if θ = 60◦C

when t = 0.

6. In an LR circuit with applied voltage E = 10(1− e−0.1t) the current i is given by

L
di

dt
+ Ri = 10(1− e−0.1t).

If the initial current is i0 find i subsequently.

Answers

1. y =
1

x
ln x +

C

x

2. y = x ln x + 2x

3. y = (t + C) cos t

4. y =
(

1
2

t− 1
4
sin 2t + C

)
cosec t

5. θ = 300− 25t− 240e−0.1t

6. i =
10

R
−

(
100

10R− L

)
e−0.1t +

[
i0 +

10L

R(10R− L)

]
e−Rt/L
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Second Order
Differential Equations

�
�

�
�19.3

Introduction
In this Section we start to learn how to solve second order differential equations of a particular type:
those that are linear and have constant coefficients. Such equations are used widely in the modelling
of physical phenomena, for example, in the analysis of vibrating systems and the analysis of electrical
circuits.

The solution of these equations is achieved in stages. The first stage is to find what is called a ‘com-
plementary function’. The second stage is to find a ‘particular integral’. Finally, the complementary
function and the particular integral are combined to form the general solution.

�

�

�

�
Prerequisites

Before starting this Section you should . . .

• understand what is meant by a differential
equation

• understand complex numbers ( 10)'

&

$

%

Learning Outcomes
On completion you should be able to . . .

• recognise a linear, constant coefficient
equation

• understand what is meant by the terms
‘auxiliary equation’ and ‘complementary
function’

• find the complementary function when the
auxiliary equation has real, equal or complex
roots
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1. Constant coefficient second order linear ODEs
We now proceed to study those second order linear equations which have constant coefficients. The
general form of such an equation is:

a
d2y

dx2
+ b

dy

dx
+ cy = f(x) (3)

where a, b, c are constants. The homogeneous form of (3) is the case when f(x) ≡ 0:

a
d2y

dx2
+ b

dy

dx
+ cy = 0 (4)

To find the general solution of (3), it is first necessary to solve (4). The general solution of (4) is
called the complementary function and will always contain two arbitrary constants. We will denote
this solution by ycf.

The technique for finding the complementary function is described in this Section.

Task

State which of the following are constant coefficient equations.
State which are homogeneous.

(a)
d2y

dx2
+ 4

dy

dx
+ 3y = e−2x (b) x

d2y

dx2
+ 2y = 0

(c)
d2x

dt2
+ 3

dx

dt
+ 7x = 0 (d)

d2y

dx2
+ 4

dy

dx
+ 4y = 0

Your solution

(a)

(b)

(c)

(d)

Answer
(a) is constant coefficient and is not homogeneous.

(b) is homogeneous but not constant coefficient as the coefficient of
d2y

dx2
is x, a variable.

(c) is constant coefficient and homogeneous. In this example the dependent variable is x.

(d) is constant coefficient and homogeneous.

Note: A complementary function is the general solution of a homogeneous, linear differential equation.
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2. Finding the complementary function
To find the complementary function we must make use of the following property.

If y1(x) and y2(x) are any two (linearly independent) solutions of a linear, homogeneous second order
differential equation then the general solution ycf(x), is

ycf(x) = Ay1(x) + By2(x)

where A, B are constants.

We see that the second order linear ordinary differential equation has two arbitrary constants in its
general solution. The functions y1(x) and y2(x) are linearly independent if one is not a multiple
of the other.

Example 5
Verify that y1 = e4x and y2 = e2x both satisfy the constant coefficient linear
homogeneous equation:

d2y

dx2
− 6

dy

dx
+ 8y = 0

Write down the general solution of this equation.

Solution

When y1 = e4x, differentiation yields:

dy1

dx
= 4e4x and

d2y1

dx2
= 16e4x

Substitution into the left-hand side of the ODE gives 16e4x − 6(4e4x) + 8e4x, which equals 0, so
that y1 = e4x is indeed a solution.

Similarly if y2 = e2x, then

dy2

dx
= 2e2x and

d2y2

dx2
= 4e2x.

Substitution into the left-hand side of the ODE gives 4e2x− 6(2e2x) + 8e2x, which equals 0, so that
y2 = e2x is also a solution of equation the ODE. Now e2x and e4x are linearly independent functions,
so, from the property stated above we have:

ycf(x) = Ae4x + Be2x is the general solution of the ODE.
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Example 6
Find values of k so that y = ekx is a solution of:

d2y

dx2
− dy

dx
− 6y = 0

Hence state the general solution.

Solution

As suggested we try a solution of the form y = ekx. Differentiating we find

dy

dx
= kekx and

d2y

dx2
= k2ekx.

Substitution into the given equation yields:

k2ekx − kekx − 6ekx = 0 that is (k2 − k − 6)ekx = 0

The only way this equation can be satisfied for all values of x is if

k2 − k − 6 = 0

that is, (k − 3)(k + 2) = 0 so that k = 3 or k = −2. That is to say, if y = ekx is to be a solution
of the differential equation, k must be either 3 or −2. We therefore have found two solutions:

y1(x) = e3x and y2(x) = e−2x

These are linearly independent and therefore the general solution is

ycf(x) = Ae3x + Be−2x

The equation k2 − k − 6 = 0 for determining k is called the auxiliary equation.

Task

By substituting y = ekx, find values of k so that y is a solution of

d2y

dx2
− 3

dy

dx
+ 2y = 0

Hence, write down two solutions, and the general solution of this equation.

First find the auxiliary equation:

Your solution

Answer

k2 − 3k + 2 = 0
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Now solve the auxiliary equation and write down the general solution:

Your solution

Answer
The auxiliary equation can be factorised as (k − 1)(k − 2) = 0 and so the required values of k are
1 and 2. The two solutions are y = ex and y = e2x. The general solution is

ycf(x) = Aex + Be2x

Example 7
Find the auxiliary equation of the differential equation:

a
d2y

dx2
+ b

dy

dx
+ cy = 0

Solution

We try a solution of the form y = ekx so that

dy

dx
= kekx and

d2y

dx2
= k2ekx.

Substitution into the given differential equation yields:

ak2ekx + bkekx + cekx = 0 that is (ak2 + bk + c)ekx = 0

Since this equation is to be satisfied for all values of x, then

ak2 + bk + c = 0

is the required auxiliary equation.

Key Point 5

The auxiliary equation of a
d2y

dx2
+ b

dy

dx
+ cy = 0 is ak2 + bk + c = 0 where y = ekx
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Task

Write down, but do not solve, the auxiliary equations of the following:

(a)
d2y

dx2
+

dy

dx
+ y = 0, (b) 2

d2y

dx2
+ 7

dy

dx
− 3y = 0

(c) 4
d2y

dx2
+ 7y = 0, (d)

d2y

dx2
+

dy

dx
= 0

Your solution

(a)

(b)

(c)

(d)

Answer

(a) k2 + k + 1 = 0 (b) 2k2 + 7k − 3 = 0 (c) 4k2 + 7 = 0 (d) k2 + k = 0

Solving the auxiliary equation gives the values of k which we need to find the complementary function.
Clearly the nature of the roots will depend upon the values of a, b and c.

Case 1 If b2 > 4ac the roots will be real and distinct. The two values of k thus obtained, k1 and
k2, will allow us to write down two independent solutions: y1(x) = ek1x and y2(x) = ek2x, and so
the general solution of the differential equation will be:

y(x) = Aek1x + Bek2x

Key Point 6

If the auxiliary equation has real, distinct roots k1 and k2, the complementary function will be:

ycf(x) = Aek1x + Bek2x

Case 2 On the other hand, if b2 = 4ac the two roots of the auxiliary equation will be equal and this
method will therefore only yield one independent solution. In this case, special treatment is required.

Case 3 If b2 < 4ac the two roots of the auxiliary equation will be complex, that is, k1 and k2

will be complex numbers. The procedure for dealing with such cases will become apparent in the
following examples.
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Example 8
Find the general solution of:

d2y

dx2
+ 3

dy

dx
− 10y = 0

Solution

By letting y = ekx, so that
dy

dx
= kekx and

d2y

dx2
= k2ekx

the auxiliary equation is found to be: k2 + 3k − 10 = 0 and so (k − 2)(k + 5) = 0

so that k = 2 and k = −5. Thus there exist two solutions: y1 = e2x and y2 = e−5x.

We can write the general solution as: y = Ae2x + Be−5x

Example 9
Find the general solution of:

d2y

dx2
+ 4y = 0

Solution

As before, let y = ekx so that
dy

dx
= kekx and

d2y

dx2
= k2ekx.

The auxiliary equation is easily found to be: k2 + 4 = 0 that is, k2 = −4 so that k = ±2i, that is,
we have complex roots. The two independent solutions of the equation are thus

y1(x) = e2ix y2(x) = e−2ix

so that the general solution can be written in the form y(x) = Ae2ix + Be−2ix.

However, in cases such as this, it is usual to rewrite the solution in the following way.

Recall that Euler’s relations give: e2ix = cos 2x + i sin 2x and e−2ix = cos 2x− i sin 2x

so that y(x) = A(cos 2x + i sin 2x) + B(cos 2x− i sin 2x).

If we now relabel the constants such that A + B = C and Ai − Bi = D we can write the general
solution in the form:

y(x) = C cos 2x + D sin 2x

Note: In Example 8 we have expressed the solution as y = . . . whereas in Example 9 we have
expressed it as y(x) = . . . . Either will do.
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Example 10
Given ay′′ + by′ + cy = 0, write down the auxiliary equation. If the roots of the
auxiliary equation are complex (one root will always be the complex conjugate of
the other) and are denoted by k1 = α + βi and k2 = α− βi show that the general
solution is:

y(x) = eαx(A cos βx + B sin βx)

Solution

Substitution of y = ekx into the differential equation yields (ak2+bk+c)ekx = 0 and so the auxiliary
equation is:

ak2 + bk + c = 0

If k1 = α + βi, k2 = α− βi then the general solution is

y = Ce(α+βi)x + De(α−βi)x

where C and D are arbitrary constants.

Using the laws of indices this is rewritten as:

y = Ceαxeβix + Deαxe−βix = eαx(Ceβix + De−βix)

Then, using Euler’s relations, we obtain:

y = eαx(C cos βx + C i sin βx + D cos βx−Di sin βx)

= eαx{(C + D) cos βx + (C i−Di) sin βx}

Writing A = C + D and B = C i−Di, we find the required solution:

y = eαx(A cos βx + B sin βx)

Key Point 7

If the auxiliary equation has complex roots, α + βi and α− βi, then the complementary function
is:

ycf = eαx(A cos βx + B sin βx)
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Task

Find the general solution of y′′ + 2y′ + 4y = 0.

Write down the auxiliary equation:

Your solution

Answer

k2 + 2k + 4 = 0

Find the complex roots of the auxiliary equation:

Your solution

Answer

k = −1±
√

3i

Using Key Point 7 with α = −1 and β =
√

3 write down the general solution:

Your solution

Answer

y = e−x(A cos
√

3x + B sin
√

3x)

Key Point 8

If the auxiliary equation has two equal roots, k, the complementary function is:

ycf = (A + Bx)ekx
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Example 11
The auxiliary equation of ay′′ + by′ + cy = 0 is ak2 + bk + c = 0. Suppose this
equation has equal roots k = k1 and k = k1. Verify that y = xek1x is a solution
of the differential equation.

Solution

We have: y = xek1x y′ = ek1x(1 + k1x) y′′ = ek1x(k2
1x + 2k1)

Substitution into the left-hand side of the differential equation yields:

ek1x{a(k2
1x + 2k1) + b(1 + k1x) + cx} = ek1x{(ak2

1 + bk1 + c)x + 2ak1 + b}

But ak2
1 + bk1 + c = 0 since k1 satisfies the auxiliary equation. Also,

k1 =
−b±

√
b2 − 4ac

2a

but since the roots are equal, then b2 − 4ac = 0 hence k1 = −b/2a. So 2ak1 + b = 0. Hence
ek1x{(ak2

1 + bk1 + c)x + 2ak1 + b} = ek1x{(0)x + 0} = 0. We conclude that y = xek1x is a solution
of ay′′ + by′ + cy = 0 when the roots of the auxiliary equation are equal. This illustrates Key Point
8.

Example 12
Obtain the general solution of the equation:

d2y

dx2
+ 8

dy

dx
+ 16y = 0.

Solution

As before, a trial solution of the form y = ekx yields an auxiliary equation k2 + 8k + 16 = 0. This
equation factorizes so that (k + 4)(k + 4) = 0 and we obtain equal roots, that is, k = −4 (twice).
If we proceed as before, writing y1(x) = e−4x y2(x) = e−4x, it is clear that the two solutions are not
independent. We need to find a second independent solution. Using the result summarised in Key
Point 8, we conclude that the second independent solution is y2 = xe−4x. The general solution is
then:

y(x) = (A + Bx)e−4x
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Exercises

1. Obtain the general solutions, that is, the complementary functions, of the following equations:

(a)
d2y

dx2
− 3

dy

dx
+ 2y = 0 (b)

d2y

dx2
+ 7

dy

dx
+ 6y = 0 (c)

d2x

dt2
+ 5

dx

dt
+ 6x = 0

(d)
d2y

dt2
+ 2

dy

dt
+ y = 0 (e)

d2y

dx2
− 4

dy

dx
+ 4y = 0 (f)

d2y

dt2
+

dy

dt
+ 8y = 0

(g)
d2y

dx2
− 2

dy

dx
+ y = 0 (h)

d2y

dt2
+

dy

dt
+ 5y = 0 (i)

d2y

dx2
+

dy

dx
− 2y = 0

(j)
d2y

dx2
+ 9y = 0 (k)

d2y

dx2
− 2

dy

dx
= 0 (l)

d2x

dt2
− 16x = 0

2. Find the auxiliary equation for the differential equation L
d2i

dt2
+ R

di

dt
+

1

C
i = 0

Hence write down the complementary function.

3. Find the complementary function of the equation
d2y

dx2
+

dy

dx
+ y = 0

Answers

1. (a) y = Aex + Be2x

(b) y = Ae−x + Be−6x

(c) x = Ae−2t + Be−3t

(d) y = Ae−t + Bte−t

(e) y = Ae2x + Bxe2x

(f) y = e−0.5t(A cos 2.78t + B sin 2.78t)

(g) y = Aex + Bxex

(h) x = e−0.5t(A cos 2.18t + B sin 2.18t)

(i) y = Ae−2x + Bex

(j) y = A cos 3x + B sin 3x

(k) y = A + Be2x

(l) x = Ae4t + Be−4t

2. Lk2 + Rk +
1

C
= 0 i(t) = Aek1t + Bek2t k1, k2 =

1

2L

(
−R±

√
R2C − 4L

C

)
3. e−x/2

(
A cos

√
3

2
x + B sin

√
3

2
x
)
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3. The particular integral
Given a second order ODE

a
d2y

dx2
+ b

dy

dx
+ c y = f(x),

a particular integral is any function, yp(x), which satisfies the equation. That is, any function
which when substituted into the left-hand side, results in the expression on the right-hand side.

Task

Show that

y = −1
4
e2x

is a particular integral of

d2y

dx2
− dy

dx
− 6y = e2x (1)

Starting with y = −1
4
e2x, find

dy

dx
and

d2y

dx2
:

Your solution

Answer
dy

dx
= −1

2
e2x,

d2y

dx2
= −e2x

Now substitute these into the ODE and simplify to check it satisfies the equation:

Your solution

Answer
Substitution yields −e2x−

(
−1

2
e2x

)
− 6

(
−1

4
e2x

)
which simplifies to e2x, the same as the right-hand

side.

Therefore y = −1
4
e2x is a particular integral and we write (attaching a subscript p):

yp(x) = −1
4
e2x
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Task

State what is meant by a particular integral.

Your solution

Answer

A particular integral is any solution of a differential equation.

4. Finding a particular integral
In the previous subsection we explained what is meant by a particular integral. Now we look at a
simple method to find a particular integral. In fact our method is rather crude. It involves trial and
error and educated guesswork. We try solutions which are of the same general form as the f(x) on
the right-hand side.

Example 13
Find a particular integral of the equation

d2y

dx2
− dy

dx
− 6y = e2x

Solution

We shall attempt to find a solution of the inhomogeneous problem by trying a function of the same
form as that on the right-hand side of the ODE. In particular, let us try y(x) = Ae2x, where A is a
constant that we shall now determine. If y(x) = Ae2x then

dy

dx
= 2Ae2x and

d2y

dx2
= 4Ae2x.

Substitution in the ODE gives:

4Ae2x − 2Ae2x − 6Ae2x = e2x

that is,

−4Ae2x = e2x

To ensure that y is a solution, we require −4A = 1, that is, A = −1
4
.

Therefore the particular integral is yp(x) = −1
4
e2x.

In Example 13 we chose a trial solution Ae2x of the same form as the ODE’s right-hand side. Table
2 provides a summary of the trial solutions which should be tried for various forms of the right-hand
side.
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Table 2: Trial solutions to find the particular integral

f(x) Trial solution

(1) constant term c constant term k

(2) linear, ax + b Ax + B

(3) polynomial in x polynomial in x
of degree r: of degree r:
axr + · · ·+ bx + c Axr + · · ·+ Bx + k

(4) a cos kx A cos kx + B sin kx

(5) a sin kx A cos kx + B sin kx

(6) aekx Aekx

(7) ae−kx Ae−kx

Task

By trying a solution of the form y = αe−x find a particular integral of the equation
d2y

dx2
+

dy

dx
− 2y = 3e−x

Substitute y = αe−x into the given equation to find α, and hence find the particular integral:

Your solution

Answer

α = −3
2
; yp(x) = −3

2
e−x

HELM (2008):
Section 19.3: Second Order Differential Equations

43



Example 14
Obtain a particular integral of the equation:

d2y

dx2
− 6

dy

dx
+ 8y = x.

Solution

In Example 13 and the last Task, we found that a fruitful approach for a first order ODE was
to assume a solution in the same form as that on the right-hand side. Suppose we assume a
solution y(x) = αx and proceed to determine α. This approach will actually fail, but let us see

why. If y(x) = αx then
dy

dx
= α and

d2y

dx2
= 0. Substitution into the differential equation yields

0− 6α + 8αx = x and α.

Comparing coefficients of x:

8αx = x so α =
1

8

Comparing constants: −6α = 0 so α = 0

We have a contradiction! Clearly a particular integral of the form αx is not possible. The problem
arises because differentiation of the term αx produces constant terms which are unbalanced on the
right-hand side. So, we try a solution of the form y(x) = αx + β with α, β constants. This is

consistent with the recommendation in Table 2 on page 43. Proceeding as before
dy

dx
= α,

d2y

dx2
= 0.

Substitution in the differential equation now gives:

0− 6α + 8(αx + β) = x

Equating coefficients of x and then equating constant terms we find:

8α = 1 (1)

−6α + 8β = 0 (2)

From (1), α = 1
8

and then from (2) β = 3
32

.

The required particular integral is yp(x) = 1
8
x + 3

32
.
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Task

Find a particular integral for the equation:

d2y

dx2
− 6

dy

dx
+ 8y = 3 cos x

First decide on an appropriate form for the trial solution, referring to Table 2 (page 43) if necessary:

Your solution

Answer

From Table 2, y = A cos x + B sin x, A and B constants.

Now find
dy

dx
and

d2y

dx2
and substitute into the differential equation:

Your solution

Answer
Differentiating, we find:

dy

dx
= −A sin x + B cos x

d2y

dx2
= −A cos x−B sin x

Substitution into the differential equation gives:

(−A cos x−B sin x)− 6(−A sin x + B cos x) + 8(A cos x + B sin x) = 3 cos x
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Equate coefficients of cos x:

Your solution

Answer

7A− 6B = 3

Also, equate coefficients of sin x:

Your solution

Answer

7B + 6A = 0

Solve these two equations in A and B simultaneously to find values for A and B, and hence obtain
the particular integral:

Your solution

Answer

A = 21
85

, B = −18
85

, yp(x) = 21
85

cos x− 18
85

sin x
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5. Finding the general solution of a second order linear
inhomogeneous ODE

The general solution of a second order linear inhomogeneous equation is the sum of its particular
integral and the complementary function. In subsection 2 (page 32) you learned how to find a
complementary function, and in subsection 4 (page 42) you learnt how to find a particular integral.
We now put these together to find the general solution.

Example 15
Find the general solution of

d2y

dx2
+ 3

dy

dx
− 10y = 3x2

Solution

The complementary function was found in Example 8 to be ycf = Ae2x + Be−5x.

The particular integral is found by trying a solution of the form y = ax2 + bx + c, so that

dy

dx
= 2ax + b,

d2y

dx2
= 2a

Substituting into the differential equation gives

2a + 3(2ax + b)− 10(ax2 + bx + c) = 3x2

Comparing constants: 2a + 3b− 10c = 0

Comparing x terms: 6a− 10b = 0

Comparing x2 terms: −10a = 3

So a = − 3

10
, b = − 9

50
, c = − 57

500
, yp(x) = − 3

10
x2 − 9

50
x− 57

500
.

Thus the general solution is y = yp(x) + ycf(x) = − 3

10
x2 − 9

50
x− 57

500
+ Ae2x + Be−5x

Key Point 9

The general solution of a second order constant coefficient ordinary differential equation

a
d2y

dx2
+ b

dy

dx
+ cy = f(x) is y = yp + ycf

being the sum of the particular integral and the complementary function.

yp contains no arbitrary constants; ycf contains two arbitrary constants.
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Engineering Example 2

An LC circuit with sinusoidal input

The differential equation governing the flow of current in a series LC circuit when subject to an

applied voltage v(t) = V0 sin ωt is L
d2i

dt2
+

1

C
i = ωV0 cos ωt

L C

i

v

Figure 3
Obtain its general solution.

Solution

The homogeneous equation is L
d2icf
dt2

+
icf
C

= 0.

Letting icf = ekt we find the auxiliary equation is Lk2 + 1
C

= 0 so that k = ±i/
√

LC. Therefore,
the complementary function is:

icf = A cos
t√
LC

+ B sin
t√
LC

where A and B arbitrary constants.

To find a particular integral try ip = E cos ωt + F sin ωt, where E, F are constants. We find:

dip
dt

= −ωE sin ωt + ωF cos ωt
d2ip
dt2

= −ω2E cos ωt− ω2F sin ωt

Substitution into the inhomogeneous equation yields:

L(−ω2E cos ωt− ω2F sin ωt) +
1

C
(E cos ωt + F sin ωt) = ωV0 cos ωt

Equating coefficients of sin ωt gives: −ω2LF + (F/C) = 0.

Equating coefficients of cos ωt gives: −ω2LE + (E/C) = ωV0.

Therefore F = 0 and E = CV0ω/(1− ω2LC). Hence the particular integral is

ip =
CV0ω

1− ω2LC
cos ωt.

Finally, the general solution is:

i = icf + ip = A cos
t√
LC

+ B sin
t√
LC

+
CV0ω

1− ω2LC
cos ωt
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6. Inhomogeneous term in the complementary function

Occasionally you will come across a differential equation a
d2y

dx2
+ b

dy

dx
+ cy = f(x) for which the

inhomogeneous term, f(x), forms part of the complementary function. One such example is the
equation

d2y

dx2
− dy

dx
− 6y = e3x

It is straightforward to check that the complementary function is ycf = Ae3x + Be−2x. Note that the
first of these terms has the same form as the inhomogeneous term, e3x, on the right-hand side of the
differential equation.

You should verify for yourself that trying a particular integral of the form yp(x) = αe3x will not work
in a case like this. Can you see why?

Instead, try a particular integral of the form yp(x) = αxe3x. Verify that

dyp

dx
= αe3x(3x + 1) and

d2yp

dx2
= αe3x(9x + 6).

Substitute these expressions into the differential equation to find α = 1
5
.

Finally, the particular integral is yp(x) = 1
5
xe3x and so the general solution to the differential equation

is:

y = Ae3x + Be−2x + 1
5
xe3x

This shows a generally effective method - where the inhomogeneous term f(x) appears in the com-
plementary function use as a trial particular integral x times what would otherwise be used.

Key Point 10

When solving

a
d2y

dx2
+ b

dy

dx
+ cy = f(x)

if the inhomogeneous term f(x) appears in the complementary function use as a trial particular
integral x times what would otherwise be used.
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Exercises

1. Find the general solution of the following equations:

(a)
d2x

dt2
− 2

dx

dt
− 3x = 6 (b)

d2y

dx2
+ 5

dy

dx
+ 4y = 8 (c)

d2y

dt2
+ 5

dy

dt
+ 6y = 2t

(d)
d2x

dt2
+ 11

dx

dt
+ 30x = 8t (e)

d2y

dx2
+ 2

dy

dx
+ 3y = 2 sin 2x (f)

d2y

dt2
+

dy

dt
+ y = 4 cos 3t

(g)
d2y

dx2
+ 9y = 4e8x (h)

d2x

dt2
− 16x = 9e6t

2. Find a particular integral for the equation
d2x

dt2
− 3

dx

dt
+ 2x = 5e3t

3. Find a particular integral for the equation
d2x

dt2
− x = 4e−2t

4. Obtain the general solution of y′′ − y′ − 2y = 6

5. Obtain the general solution of the equation
d2y

dx2
+ 3

dy

dx
+ 2y = 10 cos 2x

Find the particular solution satisfying y(0) = 1,
dy

dx
(0) = 0

6. Find a particular integral for the equation
d2y

dx2
+

dy

dx
+ y = 1 + x

7. Find the general solution of

(a)
d2x

dt2
− 6

dx

dt
+ 5x = 3 (b)

d2x

dt2
− 2

dx

dt
+ x = et

Answers

1. (a) x = Ae−t + Be3t − 2 (b) y = Ae−x + Be−4x + 2 (c) y = Ae−2t + Be−3t + 1
3
t− 5

18

(d) x = Ae−6t + Be−5t + 0.267t− 0.0978

(e) y = e−x[A sin
√

2x + B cos
√

2x]− 8
17

cos 2x− 2
17

sin 2x

(f) y = e−0.5t(A cos 0.866t + B sin 0.866t)− 0.438 cos 3t + 0.164 sin 3t

(g) y = A cos 3x + B sin 3x + 0.0548e8x (h) x = Ae4t + Be−4t + 9
20

e6t

2. xp = 2.5e3t

3. xp = 4
3
e−2t

4. y = Ae2x + Be−x − 3

5. y = Ae−2x + Be−x + 3
2
sin 2x− 1

2
cos 2x; y = 3

2
e−2x + 3

2
sin 2x− 1

2
cos 2x

6. yp = x

7. (a) x = Aet + Be5t + 3
5

(b) x = Aet + Btet + 1
2
t2et
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Applications of
Differential Equations

�
�

�
�19.4

Introduction
Sections 19.2 and 19.3 have introduced several techniques for solving commonly occurring first-order
and second-order ordinary differential equations. In this Section we solve a number of these equations
which model engineering systems.

'

&

$

%

Prerequisites
Before starting this Section you should . . .

• understand what is meant by a differential
equation

• be familiar with the terminology associated
with differential equations: order, dependent
variable and independent variable

• be able to integrate standard functions'

&

$

%

Learning Outcomes
On completion you should be able to . . .

• recognise and solve first-order ordinary
differential equations, modelling simple
electrical circuits, projectile motion and
Newton’s law of cooling

• recognise and solve second-order ordinary
differential equations with constant
coefficients modelling free electrical and
mechanical oscillations

• recognise and solve second-order ordinary
differential equations with constant
coefficients modelling forced electrical and
mechanical oscillations
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1. Modelling with first-order equations

Applying Newton’s law of cooling
In Section 19.1 we introduced Newton’s law of cooling. The model equation is

dθ

dt
= −k(θ − θs) θ = θ0 at t = 0. (5)

where θ = θ(t) is the temperature of the cooling object at time t, θs the temperature of the
environment (assumed constant) and k is a thermal constant related to the object, θ0 is the initial
temperature of the liquid.

Task

Solve this initial value problem:

dθ

dt
= −k(θ − θs), θ = θ0 at t = 0

Separate the variables to obtain an equation connecting two integrals:

Your solution

Answer∫
dθ

θ − θs
= −

∫
k dt

Now integrate both sides of this equation:

Your solution

Answer

ln(θ − θs) = −kt + C where C is constant

Apply the initial condition and take exponentials to obtain a formula for θ:

Your solution

Answer
ln(θ0−θs) = C. Hence ln(θ−θs) = −kt+ln(θ0−θs) so that ln(θ−θs)− ln(θ0−θ0) = −kt

Thus, rearranging and inverting, we find:

ln

(
θ − θs

θ0 − θs

)
= −kt ∴

θ − θs

θ0 − θs
= e−kt giving θ = θs + (θ0 − θs)e

−kt.
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The graph of θ against t for θ = θs + (θ0 − θs)e
−kt is shown in Figure 4 below.

θ

θ0

θs

t

Figure 4

We see that as time increases (t → ∞), then the temperature of the object cools down to that of
the environment, that is: θ → θs.

We could have solved (5) by the integrating factor method, which you are now asked to do.

Task

We can write the equation for Newton’s law of cooling (5) as

dθ

dt
+ k θ = kθs, θ = θ0 at t = 0 (6)

State the integrating factor for this equation:

Your solution

Answer

e
R

k dt = ekt is the integrating factor.

Multiplying (6) by this factor we find that

ekt dθ

dt
+ kektθ = kθse

kt or, rearranging,
d

dt
(ektθ) = kθse

kt

Now integrate this equation and apply the initial condition:

Your solution

Answer
Integration produces ektθ = θse

kt + C, where C is an arbitrary constant. Then, applying the initial
condition: when t = 0, θ0 = θs + C so that C = θ0 − θs gives the same result as before:

θ = θs + (θ0 − θs)e
−kt,

HELM (2008):
Section 19.4: Applications of Differential Equations

53



Modelling electrical circuits
Another application of first-order differential equations arises in the modelling of electrical circuits.
In Section 19.1 the differential equation for the RL circuit in Figure 5 below was shown to be

L
di

dt
+ Ri = E

in which the initial condition is i = 0 at t = 0.

E
+ −

R Li

Figure 5

First we write this equation in standard form {dy

dx
+ P (x)y = Q(x)} and obtain the integrating

factor.

Dividing the differential equation through by L gives

di

dt
+

R

L
i =

E

L

which is now in standard form. The integrating factor is e
R

R
L

dt = eRt/L.
Multiplying the equation in standard form by the integrating factor gives

eRt/L di

dt
+ eRt/L R

L
i =

E

L
eRt/L

or, rearranging,

d

dt
(eRt/L i) =

E

L
eRt/L.

Now we integrate both sides and apply the initial condition to obtain the solution.

Integrating the differential equation gives:

eRt/L i =
E

R
eRt/L + C

where C is a constant so

i =
E

R
+ Ce−Rt/L

Applying the initial condition i = 0 when t = 0 gives

0 =
E

R
+ C

so that C = −E

R
.

Finally, i =
E

R
(1− e−Rt/L).

Note that as t →∞, i → E

R
so as t increases the effect of the inductor diminishes to zero.
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Task

A spherical pill with volume V and surface area S is swallowed and slowly dissolves
in the stomach, releasing an active component. In one model it is assumed that
the capsule dissolves in the stomach acids such that the rate of change in volume,
dV

dt
, is directly proportional to the pill’s surface area.

(a) Show that
dV

dt
= −kV 2/3 where k is a positive real constant and solve this

given that V = V0 at t = 0.

(b) Experimental measurements indicate that for a 4 mm pill, half of the volume
has dissolved after 3 hours. Find the rate constant k (m s−1).

(c) Estimate the time required for 95% of the pill to dissolve.

(a) First write down the formulae for volume of a sphere (V ) and surface area of a sphere (S) and
so express S in terms of V by eliminating r:

Your solution

Answer

V =
4

3
πr3 S = 4πr2

From the V equation r =

(
3V

4π

)1/3

so S = (36π)1/3V 2/3 = kV 2/3 for constant k.

Now write down the differential equation modelling the solution:

Your solution

Answer
dV

dt
= −kV 2/3 (negative to represent a decrease with time)
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Using the condition V = V0 when t = 0, solve the differential equation:

Your solution

Answer
Solving by separation of variables gives

V =

{
1

3
(C − kt)

}1/3

and setting V = V0 when t = 0 means

V0 =

(
1

3
C

)3

so C = 3V
1/3
0 and the solution is

V =

{
V

1/3
0 − kt

3

}3

(b) Impose the condition that half the volume has dissolved after 3 hours to find k:

Your solution

Answer

V =

{
V

1/3
0 − kt

3

}3

and when t = 3, V =
V0

2
so(

V0

2

)1/3

= V
1/3
0 − k and so k = V

1/3
0 (1− (0.5)1/3)
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(c) First write down the solution to the differential equation inserting the value of k obtained in (b)
and then use it to estimate the time to 95% dissolving:

Your solution

Answer

V =

{
V

1/3
0 − V

1/3
0 (1− (0.5)1/3)

t

3

}3

i.e. V = V0

{
1− (1− (0.5)1/3)

t

3

}3

When 95% dissolved V = 0.05V0 so

0.05V0 = V0

{
1− (1− (0.5)1/3)

t

3

}3

so (0.05)1/3 = 1− (1− (0.5)1/3)
t

3

so

t = 3

{
1− (0.05)1/3

1− (0.5)1/3

}
≈ 9.185 ≈ 9 hr 11 min

2. Modelling free mechanical oscillations
Consider the following schematic diagram of a shock absorber:

Mass

Spring

Dashpot

Figure 6

The equation of motion can be described in terms of the vertical displacement x of the mass.

Let m be the mass, k
dx

dt
the damping force resulting from the dashpot and nx the restoring force

resulting from the spring. Here, k and n are constants.

Then the equation of motion is
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m
d2x

dt2
= −k

dx

dt
− nx.

Suppose that the mass is displaced a distance x0 initially and released from rest. Then at t = 0,

x = x0 and
dx

dt
= 0. Writing the differential equation in standard form gives

m
d2x

dt2
+ k

dx

dt
+ nx = 0.

We shall see that the nature of the oscillations described by this differential equation depends crucially
upon the relative values of the mechanical constants m, k and n. This will be explored in subsequent
Tasks.

Task

Find and solve the auxiliary equation of the differential equation

m
d2x

dt2
+ k

dx

dt
+ nx = 0.

Your solution

Answer
Putting x = eλt, the auxiliary equation is m λ2 + k λ + n = 0.

Hence λ =
−k ±

√
k2 − 4m n

2m
.

The value of k controls the amount of damping in the system. We explore the solution for various
values of k.

Case 1: No damping
If k = 0 then there is no damping. We expect, in this case, that once motion has started it will
continue for ever. The motion that ensues is called simple harmonic motion. In this case we have

λ =
±
√
−4m n

2m
, that is, λ = ±

√
n

m
i where i2 = −1.

and the solution for the displacement x is:

x = A cos

(√
n

m
t

)
+ B sin

(√
n

m
t

)
where A, B are arbitrary constants.
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Task

Impose the initial conditions x = x0 and
dx

dt
= 0 at t = 0 to find the unique

solution to the ODE:

Your solution

Answer

dx

dt
= −

√
n

m
A sin

(√
n

m
t

)
+

√
n

m
B cos

(√
n

m
t

)
When t = 0,

dx

dt
= 0 so that

√
n

m
B = 0 so that B = 0.

Therefore x = A cos

(√
n

m
t

)
.

Imposing the remaining initial condition: when t = 0, x = x0 so that x0 = A and finally:

x = x0 cos

(√
n

m
t

)
.

Case 2: Light damping
If k2 − 4mn < 0, i.e. k2 < 4mn then the roots of the auxiliary equation are complex:

λ1 =
−k + i

√
4mn− k2

2m
λ2 =

−k − i
√

4mn− k2

2m

Then, after some rearrangement:

x = e−kt/2m [A cos pt + B sin pt] in which p =
√

4mn− k2/2m.
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Task

If m = 1, n = 1 and k = 1 find λ1 and λ2 and then find the solution for the
displacement x.

Your solution

Answer

λ =
−1 + i

√
4− 1

2
= −1/2± i

√
3/2. Hence x = e−t/2

[
A cos

√
3

2
t + B sin

√
3

2
t

]
.

Impose the initial conditions x = x0,
dx

dt
= 0 at t = 0 to find the arbitrary constants and hence find

the solution to the ODE:
Your solution

Answer
Differentiating, we obtain

dx

dt
= −1

2
e−t/2

[
A cos

√
3

2
t + B sin

√
3

2
t

]
+ e−t/2

[
−
√

3

2
A sin

√
3

2
t +

√
3

2
B cos

√
3

2
t

]
At t = 0,

x = x0 = A (i)

dx

dt
= 0 = −1

2
A +

√
3

2
B (ii)

Solving (i) and (ii) we obtain

A = x0 B =

√
3

3
x0 then x = x0e

−t/2

[
cos

√
3

2
t +

√
3

3
sin

√
3

2
t

]
.

The graph of x against t is shown in Figure 7. This is the case of light damping. As the damping in
the system decreases (i.e. k → 0 ) the number of oscillations (in a given time interval) will increase.
In many mechanical systems these oscillations are usually unwanted and the designer would choose a
value of k to either reduce them or to eliminate them altogether. For the choice k2 = 4mn, known
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as the critical damping case, all the oscillations are absent.

t

x0

x

x0e
−t/2

x = x0e
−t/2

[
cos

√
3

2
t +

√
3

3
sin

√
3

2
t

]

Figure 7

Case 3: Heavy damping
If k2 − 4mn > 0, i.e. k2 > 4mn, then there are two real roots of the auxiliary equation, λ1 and λ2:

λ1 =
−k +

√
k2 − 4mn

2m
λ2 =

−k −
√

k2 − 4mn

2m

Then

x = Aeλ1t + Beλ2t.

Task

If m = 1, n = 1 and k = 2.5 find λ1 and λ2 and then find the solution for the
displacement x.

Your solution

Answer

λ =
−2.5±

√
6.25− 4

2
= −1.25± 0.75

Hence λ1, λ2 = −0.5,−2 and so x = Ae−0.5t + Be−2t
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Impose the initial conditions x = x0,
dx

dt
= 0 at t = 0 to find the arbitrary constants and hence find

the solution to the ODE.

Your solution

Answer
Differentiating, we obtain

dx

dt
= −0.5Ae−0.5t − 2Be−2t

At t = 0,

x = x0 = A + B (i)

dx

dt
= 0 = −0.5A− 2B (ii)

Solving (i) and (ii) we obtain A =
4

3
x0 B = −1

3
x0 then x =

1

3
x0(4e−0.5t − e−2t).

The graph of x against t is shown below. This is the case of heavy damping.

t

x0

x

Other cases are dealt with in the Exercises at the end of the Section.
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3. Modelling forced mechanical oscillations
Suppose now that the mass is subject to a force f(t) after the initial disturbance. Then the equation
of motion is

m
d2x

dt2
+ k

dx

dt
+ nx = f(t)

Consider the case f(t) = F cos ωt, that is, an oscillatory force of magnitude F and angular frequency
ω. Choosing specific values for the constants in the model: m = n = 1, k = 0, and ω = 2 we find

d2x

dt2
+ x = F cos 2t

Task

Find the complementary function for the differential equation

d2x

dt2
+ x = F cos 2t

Your solution

Answer
The homogeneous equation is

d2x

dt2
+ x = 0

with auxiliary equation λ2 + 1 = 0. Hence the complementary function is

xcf = A cos t + B sin t.

Now find a particular integral for the differential equation:
Your solution
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Answer

Try xp = C cos 2t+D sin 2t so that
d2xp

dt2
= −4C cos 2t−4D sin 2t. Substituting into the differential

equation gives

(−4C + C) cos 2t + (−4D + D sin 2t) ≡ F cos 2t.

Comparing coefficients gives −3C = F and − 3D = 0 so that D = 0, C = −1

3
F and

xp = −1

3
F cos 2t. The general solution of the differential equation is therefore

x = xp + xcf = −1

3
F cos 2t + A cos t + B sin t.

Finally, apply the initial conditions to find the solution for the displacement x:
Your solution

Answer
We need to determine the derivative and apply the initial conditions:

dx

dt
=

2

3
F sin 2t− A sin t + B cos t.

At t = 0 x = x0 = −1

3
F + A and

dx

dt
= 0 = B

Hence B = 0 and A = x0 +
1

3
F.

Then x = −1

3
F cos 2t +

(
x0 +

1

3
F

)
cos t.

The graph of x against t is shown below.

t

x0

x

If the angular frequency ω of the applied force is nearly equal to that of the free oscillation the
phenomenon of beats occurs. If the angular frequencies are equal we get the phenomenon of
resonance. Note that we can eliminate resonance by introducing damping into the system.
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4. Modelling forces on beams

Engineering Example 3

Shear force and bending moment of a beam

Introduction

The beam is a fundamental part of most structures we see around us. It may be used in many ways
depending as how its ends are fixed. One end may be rigidly fixed and the other free (called can-
tilevered) or both ends may be resting on supports (called simply supported). Other combinations
are possible. There are three basic quantities of interest in the deformation of beams, the deflection,
the shear force and the bending moment.

For a beam which is supporting a load of w (measured in N m−1 and which may represent the
self-weight of the beam or may be an external load), the shear force is denoted by S and measured
in N m−1 and the bending moment is denoted by M and measured in N m−1.

The quantities M , S and w are related by

dM

dz
= S (1)

and

dS

dz
= −w (2)

where z measures the position along the beam. If one of the quantities is known, the others can be
calculated from the Equations (1) and (2). In words, the shear force is the negative of the derivative
(with respect to position) of the bending moment and the load is the derivative of the shear force.
Alternatively, the shear force is the negative of the integral (with respect to position) of the load and
the bending moment is the integral of the shear force. The negative sign in Equation (2) reflects the
fact that the load is normally measured positively in the downward direction while a positive shear
force refers to an upward force.

Problem posed in words

A beam is fixed rigidly at one end and free to move at the other end (like a diving board). It only
has to support its own weight. Find the shear force and the bending moment along its length.

Mathematical statement of problem

A uniform beam of length L, supports its own weight wo (a constant). At one end (z = 0), the
beam is fixed rigidly while the other end (z = L) is free to move. Find the shear force S and the
bending moment M as functions of z.

Mathematical analysis

As w is a constant, Equation (2) gives

S = −
∫

wdz = −
∫

wodz = −woz + C.
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At the free end (z = L) , the shear force S = 0 so C = woL giving

S = wo (L− z)

This expression can be substituted into Equation (1) to give

M =

∫
Sdz =

∫
wo (L− z) dz =

∫
(woL− woz) dz = woLz − wo

2
z2 + K.

Once again, M = 0 at the free end z = L so K is given by K = −wo

2
L2. Thus

M = woLz − wo

2
z2 − wo

2
L2

The diagrams in Figure 8 show the load w (Figure 8a), the shear force S (Figure 8b) and the bending
moment M (Figure 8c) as functions of position z.

w = w0

L
Position (z)

Load (w)

Shear Force (S)

Bending Moment (M)

S = w0L

M = −w0L
2

Position (z)

Position (z)

L

L

(a)

(b)

(c)

Figure 8: The loading (a), shear force (b) and bending moment (c) as functions of position z

Interpretation

The beam deforms (as we might have expected) with the shear force and bending moments having
maximum values at the fixed end and minimum (zero) values at the free end. You can easily
experience this for yourselves: simply hold a wooden plank (not too heavy) at one end with both
hands so that it is horizontal. As you try this with planks of increasing length (and hence weight)
you will find it increasingly difficult to support the weight of the plank (this is the shear force) and
increasingly difficult to keep the plank horizontal (this is the bending moment).

This mathematical model is an excellent description of real beams.
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Engineering Example 4

Deflection of a uniformly loaded beam

Introduction

A uniformly loaded beam of length L is supported at both ends as shown in Figure 9. The deflection
y(x) is a function of horizontal position x and obeys the ordinary differential equation (ODE)

d4y

dx4
(x) =

1

EI
q(x) (1)

where E is Young’s modulus, I is the moment of inertia and q(x) is the load per unit length at
point x. We assume in this problem that q(x) = q a constant. The boundary conditions are (i) no
deflection at x = 0 and x = L (ii) no curvature of the beam at x = 0 and x = L.

y(x)

x

L

q
Beam

Load

Ground y

x

Figure 9: The bending beam, parameters involved in the mathematical formulation

Problem in words
Find the deflection of a beam, supported so that that there is no deflection and no curvature of the
beam at its ends, subject to a uniformly distributed load, as a function of position along the beam.

Mathematical statement of problem
Find the equation of the curve y(x) assumed by the bending beam that satisfies the ODE (1). Use
the coordinate system shown in Figure 9 where the origin is at the left extremity of the beam. In
this coordinate system, the boundary conditions, which require that there is no deflection at x = 0
and x = L, and that there is no curvature of the beam at x = 0 and x = L, are

(a) y(0) = 0

(b) y(L) = 0

(c)
d2y

dx2

∣∣
x=0

= 0

(d)
d2y

dx2

∣∣
x=L

= 0

(e)
d2y

dx2

∣∣
x=L

= 0

Note that
dy(x)

dx
and

d2y(x)

dx2
are respectively the slope and the radius of curvature of the curve at

point (x, y).
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Mathematical analysis

Integrating Equation (1) leads to:

EI
d3y

dx3
(x) = qx + A (2)

Integrating a second time:

EI
d2y

dx2
(x) = qx2/2 + Ax + B (3)

Integrating a third time:

EI
dy

dx
(x) = qx3/6 + Ax2/2 + Bx + C (4)

Integrating a fourth time:

EIy(x) = qx4/24 + Ax3/6 + Bx2/2 + Cx + D. (5)

The boundary conditions (a) and (b) enable determination of the constants of integration A, B, C,D.
Indeed, the boundary condition (a), y(0) = 0, and Equation (5) give

EIy(0) = q × (0)4/24 + A× (0)3/6 + B × (0)2/2 + C × (0) + D = 0

which yields D = 0.
The boundary condition (b), y(L) = 0, and Equation (5) give

EIy(L) = qL4/24 + AL3/6 + BL2/2 + CL + D.

Using the newly found value for D one writes

qL4/24 + AL3/6 + BL2/2 + CL = 0 (6)

The boundary condition (c) obtained from the definition of the radius of curvature,
d2y

dx2
(0) = 0, and

Equation (3) give

I
d2y

dx2
(0) = q × (0)2/2 + A× (0) + B

which yields B = 0 . The boundary condition (d),
d2y

dx2
(L) = 0, and Equation (3) give

EI
d2y

dx2
(L) = qL2/2 + AL = 0

which yields A = −qL/2 . The expressions for A, B, D are introduced in Equation (6) to find the last
unknown constant C. This leads to qL4/24 − qL4/12 + CL = 0 or C = qL3/24. Finally, Equation
(5) and the values of constants lead to the solution

y(x) = [qx4/24− qLx3/12 + qL3x/24]/EI. (7)

Interpretation
The predicted deflection is zero at both ends as required, and you may check that it is symmetrical
about the centre of the beam by switching to the coordinate system (X, Y ) with L/2 − x = X
and y = Y and verifying that the deflection Y (X) is symmetrical about the vertical axis, i.e.
Y (X) = Y (−X).
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Exercises

1. In an RC circuit (a resistor and a capacitor in series) the applied emf is a constant E. Given

that
dq

dt
= i where q is the charge in the capacitor, i the current in the circuit, R the resistance

and C the capacitance the equation for the circuit is

Ri +
q

C
= E.

If the initial charge is zero find the charge subsequently.

2. If the voltage in the RC circuit is E = E0 cos ωt find the charge and the current at time t.

3. An object is projected from the Earth’s surface. What is the least velocity (the escape velocity)
of projection in order to escape the gravitational field, ignoring air resistance.

The equation of motion is

m v
dv

dx
= −m g

R2

x2

where the mass of the object is m, its distance from the centre of the Earth is x and the radius
of the Earth is R.

4. The radial stress p at distance r from the axis of a thick cylinder subjected to internal pressure

is given by p + r
dp

dr
= A− p where A is a constant. If p = p0 at the inner wall (r = r1) and

is negligible (p = 0) at the outer wall (r = r2) find an expression for p.

5. The equation for an LCR circuit with applied voltage E is

L
di

dt
+ Ri +

1

C
q = E.

By differentiating this equation find the solution for q(t) and i(t) if L = 1, R = 100, C = 10−4

and E = 1000 given that q = 0 and i = 0 at t = 0.

6. Consider the free vibration problem in Section 19.4 subsection 2 (page 57) when m = 1, n = 1
and k = 2 (critical damping).

Find the solution for x(t).

7. Repeat Exercise 6 for the case m = 1, n = 1 and k = 1.5 (light damping)

8. Consider the forced vibration problem in Section 19.4 subsection 2 with m = 1, n = 25, k =
8, E = sin 3t, x0 = 0 with an initial velocity of 3.

9. This refers to the Task on page 55 concerning modelling the dissolving of a pill in the stomach.

An alternative model supposes that the pill is very rapidly permeated by stomach acids and the
small granules contained in the capsule dissolve individually. In this case, the rate of change
of volume is assumed to be directly proportional to the volume. Using the experimental data
given in the Task, estimate the time for 95% of the pill to dissolve, based on this alternative
model, and compare results.
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Answers

1. Use the equation in the form R
dq

dt
+

q

C
= E or

dq

dt
+

1

RC
q =

E

R
.

The integrating factor is et/RC and the general solution is

q = EC(1− e−t/RC) and as t →∞ q → EC.

2. q =
E0C

1 + ω2R2C2

[
cos ωt− e−t/RC + ωRC sin ωt

]
i =

dq

dt
=

E0C

1 + ω2R2C2

[
−ω sin ωt +

1

RC
e−t/RC + ω2RC cos ωt

]
.

3. vmin =
√

2gR. If R = 6378 km and g = 9.81 m s−2 then vmin = 11.2 km s−1.

4. p =
p0r

2
1

r2
1 − r2

2

(
1− r2

2

r2

)
5. q = 0.1− 1

10
√

3
e−50t(sin 50

√
3t +

√
3 cos 50

√
3t) i =

20√
3
e−50t sin 50

√
3t.

6. x = x0(1 + t)e−t

7. x = x0e
−0.75t(cos

√
7

4
t +

3√
7

sin

√
7

4
t)

8. x =
1

104

[
e−4t (3 cos 3t + 106 sin 3t)− 3 cos 3t + 2 sin 3t)

]
9. This leads to

dV

dt
= −kV and V = V0e

−kt where k =
1

3
ln 2. The time taken is about 4 hr

19 min. This is much less than the other model, as should be expected.
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